Source code for data_morph.morpher

"""Module containing data morphing logic."""

from __future__ import annotations

from functools import partial
from numbers import Number
from pathlib import Path

import numpy as np
import pandas as pd
import tqdm

from .bounds.bounding_box import BoundingBox
from .data.dataset import Dataset
from .data.stats import get_values
from .plotting.animation import (
    ease_in_out_quadratic,
    ease_in_out_sine,
    ease_in_sine,
    ease_out_sine,
    linear,
    stitch_gif_animation,
)
from .plotting.static import plot
from .shapes.bases.shape import Shape


[docs] class DataMorpher: """ Class for morphing a dataset into a target shape, preserving summary statistics. Parameters ---------- decimals : int The number of decimals to which summary statistics should be the preserved. in_notebook : bool Whether this is running in a notebook. output_dir : str or pathlib.Path, optional The directory to write output files (CSV, PNG, GIF). write_images : bool, default ``True`` Whether to write image files to :attr:`output_dir`. This must be ``True`` for animation. write_data : bool, default ``False`` Whether to write data files to :attr:`output_dir`. seed : int, optional Provide an integer seed to the random number generator. num_frames : int, default 100 The number of frames to record out of the morphing process. keep_frames : bool, default ``False`` Whether to keep image files written to :attr:`output_dir` after stitching the GIF animation. forward_only_animation : bool, default ``False`` Whether to generate the animation in the forward direction only. By default, the animation will play forward and then reverse. """ def __init__( self, *, decimals: int, in_notebook: bool, output_dir: str | Path | None = None, write_images: bool = True, write_data: bool = False, seed: int | None = None, num_frames: int = 100, keep_frames: bool = False, forward_only_animation: bool = False, ) -> None: self._rng = np.random.default_rng(seed) self.forward_only_animation = forward_only_animation """bool: Whether to generate the animation in the forward direction only. By default, the animation will play forward and then reverse. This has no effect unless :attr:`write_images` is ``True``.""" self.keep_frames = keep_frames """bool: Whether to keep image files written to :attr:`output_dir` after stitching the GIF animation. This has no effect unless :attr:`write_images` is ``True``.""" self.write_images = write_images """bool: Whether to write image files to :attr:`output_dir`.""" self.write_data = write_data """bool: Whether to write data files to :attr:`output_dir`.""" self.output_dir = output_dir if output_dir is None else Path(output_dir) """pathlib.Path: The directory to write output files (CSV, PNG, GIF).""" if (self.write_images or self.write_data) and self.output_dir is None: raise ValueError( 'output_dir cannot be None if write_images or write_data is True.' ) if ( isinstance(decimals, bool) or not isinstance(decimals, int) or decimals < 0 or decimals > 5 ): raise ValueError( 'decimals must be a non-negative integer less than or equal to 5.' ) self.decimals = decimals """int: The number of decimals to which summary statistics should be the preserved.""" if ( isinstance(num_frames, bool) or not isinstance(num_frames, int) or num_frames <= 0 or num_frames > 100 ): raise ValueError( 'num_frames must be a positive integer less than or equal to 100.' ) self.num_frames = num_frames """int: The number of frames to capture. Must be > 0 and <= 100.""" self._looper = tqdm.tnrange if in_notebook else tqdm.trange def _select_frames( self, iterations: int, ramp_in: bool, ramp_out: bool, freeze_for: int ) -> list: """ Identify the frames to capture for the animation. Parameters ---------- iterations : int The number of iterations. ramp_in : bool Whether to more slowly transition in the beginning. ramp_out : bool Whether to slow down the transition at the end. freeze_for : int The number of frames to freeze at the beginning and end. Must be in the interval [0, 50]. Returns ------- list The list of frame numbers to include in the animation. """ if ( isinstance(iterations, bool) or not isinstance(iterations, int) or iterations <= 0 ): raise ValueError('iterations must be a positive integer.') if ( isinstance(freeze_for, bool) or not isinstance(freeze_for, int) or freeze_for < 0 or freeze_for > 50 ): raise ValueError( 'freeze_for must be a non-negative integer less than or equal to 50.' ) # freeze initial frame frames = [0] * freeze_for if ramp_in and not ramp_out: easing_function = ease_in_sine elif ramp_out and not ramp_in: easing_function = ease_out_sine elif ramp_out and ramp_in: easing_function = ease_in_out_sine else: easing_function = linear # add transition frames frames.extend( [ int(round(easing_function(x) * iterations)) for x in np.arange(0, 1, 1 / (self.num_frames - freeze_for // 2)) ] ) # freeze final frame frames.extend([iterations] * freeze_for) return frames def _record_frames( self, data: pd.DataFrame, bounds: BoundingBox, base_file_name: str, count: int, frame_number: int, ) -> int: """ Record frame data as a plot and, when :attr:`write_data` is ``True``, as a CSV file. Parameters ---------- data : pandas.DataFrame The DataFrame of the data for morphing. bounds : BoundingBox The plotting limits. base_file_name : str The prefix to the file names for both the PNG and GIF files. count : int The number of frames to record with the data. frame_number : int The starting frame number. Returns ------- int The next frame number available for recording. """ if self.write_images or self.write_data: is_start = frame_number == 0 for _ in range(count): if self.write_images: plot( data, save_to=( self.output_dir / f'{base_file_name}-image-{frame_number:03d}.png' ), decimals=self.decimals, x_bounds=bounds.x_bounds, y_bounds=bounds.y_bounds, dpi=150, ) if ( self.write_data and not is_start ): # don't write data for the initial frame (input data) data.to_csv( self.output_dir / f'{base_file_name}-data-{frame_number:03d}.csv', index=False, ) frame_number += 1 return frame_number def _is_close_enough(self, df1: pd.DataFrame, df2: pd.DataFrame) -> bool: """ Check whether the statistics are within the acceptable bounds. Parameters ---------- df1 : pandas.DataFrame The original DataFrame. df2 : pandas.DataFrame The DataFrame after the latest perturbation. Returns ------- bool Whether the values are the same to :attr:`decimals`. """ return np.all( np.abs( np.subtract( *( np.floor(np.array(get_values(data)) * 10**self.decimals) for data in [df1, df2] ) ) ) == 0 ) def _perturb( self, df: pd.DataFrame, target_shape: Shape, *, shake: Number, allowed_dist: Number, temp: Number, bounds: BoundingBox, ) -> pd.DataFrame: """ Perform one round of perturbation. Parameters ---------- df : pandas.DataFrame The data to perturb. target_shape : Shape The shape to morph the data into. shake : numbers.Number The standard deviation of random movement applied in each direction, sampled from a normal distribution with a mean of zero. allowed_dist : numbers.Number The farthest apart the perturbed points can be from the target shape. temp : numbers.Number The temperature for simulated annealing. The higher the temperature the more we are willing to accept perturbations that might be worse than what we had before. The goal is to avoid local optima. bounds : BoundingBox The minimum/maximum x/y values. Returns ------- pandas.DataFrame The input dataset with one point perturbed. """ row = self._rng.integers(0, len(df)) initial_x = df.at[row, 'x'] initial_y = df.at[row, 'y'] # this is the simulated annealing step, if "do_bad", then we are willing to # accept a new state which is worse than the current one do_bad = self._rng.random() < temp done = False while not done: jitter_x, jitter_y = self._rng.normal(loc=0, scale=shake, size=2) new_x = initial_x + jitter_x new_y = initial_y + jitter_y old_dist = target_shape.distance(initial_x, initial_y) new_dist = target_shape.distance(new_x, new_y) close_enough = new_dist < old_dist or new_dist < allowed_dist or do_bad within_bounds = [new_x, new_y] in bounds done = close_enough and within_bounds df.loc[row, 'x'] = new_x df.loc[row, 'y'] = new_y return df
[docs] def morph( self, start_shape: Dataset, target_shape: Shape, *, iterations: int = 100_000, max_temp: Number = 0.4, min_temp: Number = 0, min_shake: Number = 0.3, max_shake: Number = 1, allowed_dist: Number = 2, ramp_in: bool = False, ramp_out: bool = False, freeze_for: int = 0, ) -> pd.DataFrame: """ Morph a dataset into a target shape by perturbing it with simulated annealing. Parameters ---------- start_shape : Dataset The dataset for the starting shape. target_shape : Shape The shape we want to morph into. iterations : int The number of iterations to run simulated annealing for. max_temp : numbers.Number The maximum temperature for simulated annealing (starting temperature). min_temp : numbers.Number The minimum temperature for simulated annealing (ending temperature). min_shake : numbers.Number The standard deviation of random movement applied in each direction, sampled from a normal distribution with a mean of zero. Value will start at ``max_shake`` and move toward ``min_shake``. max_shake : numbers.Number The standard deviation of random movement applied in each direction, sampled from a normal distribution with a mean of zero. Value will start at ``max_shake`` and move toward ``min_shake``. allowed_dist : numbers.Number The farthest apart the perturbed points can be from the target shape. ramp_in : bool, default ``False`` Whether to more slowly transition in the beginning. This only affects the frames, not the algorithm. ramp_out : bool, default ``False`` Whether to slow down the transition at the end. This only affects the frames, not the algorithm. freeze_for : int, default 0 The number of frames to freeze at the beginning and end. This only affects the frames, not the algorithm. Must be in the interval [0, 50]. Returns ------- pandas.DataFrame The morphed data. See Also -------- :class:`.DataLoader` The initial state for the morphing process is a :class:`.Dataset`. Available built-in options can be found here. :class:`.ShapeFactory` The target state for the morphing process is a :class:`.Shape`. Options for the target can be found here. Notes ----- This method saves data to disk at :attr:`output_dir`, which includes frames and/or animation (see :attr:`write_images` and :attr:`keep_frames`) and, depending on :attr:`write_data`, CSV files for each frame. """ for name, value in [ ('max_temp', max_temp), ('min_temp', min_temp), ('min_shake', min_shake), ('max_shake', max_shake), ]: if ( isinstance(value, bool) or not isinstance(value, Number) or not 0 <= value <= 1 ): raise ValueError(f'{name} must be a number >= 0 and <= 1.') for name, min_value, max_value in [ ('temp', min_temp, max_temp), ('shake', min_shake, max_shake), ]: if min_value >= max_value: raise ValueError(f'max_{name} must be greater than min_{name}.') if ( isinstance(allowed_dist, bool) or not isinstance(allowed_dist, Number) or allowed_dist < 0 ): raise ValueError('allowed_dist must be a non-negative numeric value.') morphed_data = start_shape.df.copy() # iteration numbers that we will end up writing to file as frames frame_numbers = self._select_frames( iterations=iterations, ramp_in=ramp_in, ramp_out=ramp_out, freeze_for=freeze_for, ) base_file_name = f'{start_shape.name}-to-{target_shape}' record_frames = partial( self._record_frames, base_file_name=base_file_name, bounds=start_shape.plot_bounds, ) frame_number = record_frames( data=morphed_data, count=max(freeze_for, 1), frame_number=0, ) def _tweening( frame: int, *, min_value: Number, max_value: Number ) -> Number: # numpydoc ignore=PR01,RT01 """Determine the next value with tweening.""" return (max_value - min_value) * ease_in_out_quadratic( (iterations - frame) / iterations ) + min_value get_current_temp = partial( _tweening, min_value=min_temp, max_value=max_temp, ) get_current_shake = partial( _tweening, min_value=min_shake, max_value=max_shake, ) for i in self._looper( iterations, leave=True, ascii=True, desc=f'{target_shape} pattern' ): perturbed_data = self._perturb( morphed_data.copy(), target_shape=target_shape, shake=get_current_shake(i), allowed_dist=allowed_dist, temp=get_current_temp(i), bounds=start_shape.morph_bounds, ) if self._is_close_enough(start_shape.df, perturbed_data): morphed_data = perturbed_data frame_number = record_frames( data=morphed_data, count=frame_numbers.count(i), frame_number=frame_number, ) if self.write_images: stitch_gif_animation( self.output_dir, start_shape.name, target_shape=target_shape, keep_frames=self.keep_frames, forward_only_animation=self.forward_only_animation, ) if self.write_data: morphed_data.to_csv( self.output_dir / f'{base_file_name}-data-{frame_number:03d}.csv', index=False, ) return morphed_data