"""Module containing data morphing logic."""
from __future__ import annotations
from functools import partial
from numbers import Number
from pathlib import Path
import numpy as np
import pandas as pd
import tqdm
from .bounds.bounding_box import BoundingBox
from .data.dataset import Dataset
from .data.stats import get_values
from .plotting.animation import (
ease_in_out_quadratic,
ease_in_out_sine,
ease_in_sine,
ease_out_sine,
linear,
stitch_gif_animation,
)
from .plotting.static import plot
from .shapes.bases.shape import Shape
[docs]
class DataMorpher:
"""
Class for morphing a dataset into a target shape, preserving summary statistics.
Parameters
----------
decimals : int
The number of decimals to which summary statistics should be the preserved.
in_notebook : bool
Whether this is running in a notebook.
output_dir : str or pathlib.Path, optional
The directory to write output files (CSV, PNG, GIF).
write_images : bool, default ``True``
Whether to write image files to :attr:`output_dir`.
This must be ``True`` for animation.
write_data : bool, default ``False``
Whether to write data files to :attr:`output_dir`.
seed : int, optional
Provide an integer seed to the random number generator.
num_frames : int, default 100
The number of frames to record out of the morphing process.
keep_frames : bool, default ``False``
Whether to keep image files written to :attr:`output_dir` after
stitching the GIF animation.
forward_only_animation : bool, default ``False``
Whether to generate the animation in the forward direction only.
By default, the animation will play forward and then reverse.
"""
def __init__(
self,
*,
decimals: int,
in_notebook: bool,
output_dir: str | Path | None = None,
write_images: bool = True,
write_data: bool = False,
seed: int | None = None,
num_frames: int = 100,
keep_frames: bool = False,
forward_only_animation: bool = False,
) -> None:
self._rng = np.random.default_rng(seed)
self.forward_only_animation = forward_only_animation
"""bool: Whether to generate the animation in the forward direction only.
By default, the animation will play forward and then reverse. This has no
effect unless :attr:`write_images` is ``True``."""
self.keep_frames = keep_frames
"""bool: Whether to keep image files written to :attr:`output_dir` after
stitching the GIF animation. This has no effect unless :attr:`write_images`
is ``True``."""
self.write_images = write_images
"""bool: Whether to write image files to :attr:`output_dir`."""
self.write_data = write_data
"""bool: Whether to write data files to :attr:`output_dir`."""
self.output_dir = output_dir if output_dir is None else Path(output_dir)
"""pathlib.Path: The directory to write output files (CSV, PNG, GIF)."""
if (self.write_images or self.write_data) and self.output_dir is None:
raise ValueError(
'output_dir cannot be None if write_images or write_data is True.'
)
if (
isinstance(decimals, bool)
or not isinstance(decimals, int)
or decimals < 0
or decimals > 5
):
raise ValueError(
'decimals must be a non-negative integer less than or equal to 5.'
)
self.decimals = decimals
"""int: The number of decimals to which summary statistics should be the preserved."""
if (
isinstance(num_frames, bool)
or not isinstance(num_frames, int)
or num_frames <= 0
or num_frames > 100
):
raise ValueError(
'num_frames must be a positive integer less than or equal to 100.'
)
self.num_frames = num_frames
"""int: The number of frames to capture. Must be > 0 and <= 100."""
self._looper = tqdm.tnrange if in_notebook else tqdm.trange
def _select_frames(
self, iterations: int, ramp_in: bool, ramp_out: bool, freeze_for: int
) -> list:
"""
Identify the frames to capture for the animation.
Parameters
----------
iterations : int
The number of iterations.
ramp_in : bool
Whether to more slowly transition in the beginning.
ramp_out : bool
Whether to slow down the transition at the end.
freeze_for : int
The number of frames to freeze at the beginning and end. Must be in the
interval [0, 50].
Returns
-------
list
The list of frame numbers to include in the animation.
"""
if (
isinstance(iterations, bool)
or not isinstance(iterations, int)
or iterations <= 0
):
raise ValueError('iterations must be a positive integer.')
if (
isinstance(freeze_for, bool)
or not isinstance(freeze_for, int)
or freeze_for < 0
or freeze_for > 50
):
raise ValueError(
'freeze_for must be a non-negative integer less than or equal to 50.'
)
# freeze initial frame
frames = [0] * freeze_for
if ramp_in and not ramp_out:
easing_function = ease_in_sine
elif ramp_out and not ramp_in:
easing_function = ease_out_sine
elif ramp_out and ramp_in:
easing_function = ease_in_out_sine
else:
easing_function = linear
# add transition frames
frames.extend(
[
int(round(easing_function(x) * iterations))
for x in np.arange(0, 1, 1 / (self.num_frames - freeze_for // 2))
]
)
# freeze final frame
frames.extend([iterations] * freeze_for)
return frames
def _record_frames(
self,
data: pd.DataFrame,
bounds: BoundingBox,
base_file_name: str,
count: int,
frame_number: int,
) -> int:
"""
Record frame data as a plot and, when :attr:`write_data` is ``True``, as a CSV file.
Parameters
----------
data : pandas.DataFrame
The DataFrame of the data for morphing.
bounds : BoundingBox
The plotting limits.
base_file_name : str
The prefix to the file names for both the PNG and GIF files.
count : int
The number of frames to record with the data.
frame_number : int
The starting frame number.
Returns
-------
int
The next frame number available for recording.
"""
if self.write_images or self.write_data:
is_start = frame_number == 0
for _ in range(count):
if self.write_images:
plot(
data,
save_to=(
self.output_dir
/ f'{base_file_name}-image-{frame_number:03d}.png'
),
decimals=self.decimals,
x_bounds=bounds.x_bounds,
y_bounds=bounds.y_bounds,
dpi=150,
)
if (
self.write_data and not is_start
): # don't write data for the initial frame (input data)
data.to_csv(
self.output_dir
/ f'{base_file_name}-data-{frame_number:03d}.csv',
index=False,
)
frame_number += 1
return frame_number
def _is_close_enough(self, df1: pd.DataFrame, df2: pd.DataFrame) -> bool:
"""
Check whether the statistics are within the acceptable bounds.
Parameters
----------
df1 : pandas.DataFrame
The original DataFrame.
df2 : pandas.DataFrame
The DataFrame after the latest perturbation.
Returns
-------
bool
Whether the values are the same to :attr:`decimals`.
"""
return np.all(
np.abs(
np.subtract(
*(
np.floor(np.array(get_values(data)) * 10**self.decimals)
for data in [df1, df2]
)
)
)
== 0
)
def _perturb(
self,
df: pd.DataFrame,
target_shape: Shape,
*,
shake: Number,
allowed_dist: Number,
temp: Number,
bounds: BoundingBox,
) -> pd.DataFrame:
"""
Perform one round of perturbation.
Parameters
----------
df : pandas.DataFrame
The data to perturb.
target_shape : Shape
The shape to morph the data into.
shake : numbers.Number
The standard deviation of random movement applied in each direction,
sampled from a normal distribution with a mean of zero.
allowed_dist : numbers.Number
The farthest apart the perturbed points can be from the target shape.
temp : numbers.Number
The temperature for simulated annealing. The higher the temperature
the more we are willing to accept perturbations that might be worse than
what we had before. The goal is to avoid local optima.
bounds : BoundingBox
The minimum/maximum x/y values.
Returns
-------
pandas.DataFrame
The input dataset with one point perturbed.
"""
row = self._rng.integers(0, len(df))
initial_x = df.at[row, 'x']
initial_y = df.at[row, 'y']
# this is the simulated annealing step, if "do_bad", then we are willing to
# accept a new state which is worse than the current one
do_bad = self._rng.random() < temp
done = False
while not done:
jitter_x, jitter_y = self._rng.normal(loc=0, scale=shake, size=2)
new_x = initial_x + jitter_x
new_y = initial_y + jitter_y
old_dist = target_shape.distance(initial_x, initial_y)
new_dist = target_shape.distance(new_x, new_y)
close_enough = new_dist < old_dist or new_dist < allowed_dist or do_bad
within_bounds = [new_x, new_y] in bounds
done = close_enough and within_bounds
df.loc[row, 'x'] = new_x
df.loc[row, 'y'] = new_y
return df
[docs]
def morph(
self,
start_shape: Dataset,
target_shape: Shape,
*,
iterations: int = 100_000,
max_temp: Number = 0.4,
min_temp: Number = 0,
min_shake: Number = 0.3,
max_shake: Number = 1,
allowed_dist: Number = 2,
ramp_in: bool = False,
ramp_out: bool = False,
freeze_for: int = 0,
) -> pd.DataFrame:
"""
Morph a dataset into a target shape by perturbing it
with simulated annealing.
Parameters
----------
start_shape : Dataset
The dataset for the starting shape.
target_shape : Shape
The shape we want to morph into.
iterations : int
The number of iterations to run simulated annealing for.
max_temp : numbers.Number
The maximum temperature for simulated annealing (starting temperature).
min_temp : numbers.Number
The minimum temperature for simulated annealing (ending temperature).
min_shake : numbers.Number
The standard deviation of random movement applied in each direction,
sampled from a normal distribution with a mean of zero. Value will start
at ``max_shake`` and move toward ``min_shake``.
max_shake : numbers.Number
The standard deviation of random movement applied in each direction,
sampled from a normal distribution with a mean of zero. Value will start
at ``max_shake`` and move toward ``min_shake``.
allowed_dist : numbers.Number
The farthest apart the perturbed points can be from the target shape.
ramp_in : bool, default ``False``
Whether to more slowly transition in the beginning.
This only affects the frames, not the algorithm.
ramp_out : bool, default ``False``
Whether to slow down the transition at the end.
This only affects the frames, not the algorithm.
freeze_for : int, default 0
The number of frames to freeze at the beginning and end.
This only affects the frames, not the algorithm. Must be in the
interval [0, 50].
Returns
-------
pandas.DataFrame
The morphed data.
See Also
--------
:class:`.DataLoader`
The initial state for the morphing process is a :class:`.Dataset`.
Available built-in options can be found here.
:class:`.ShapeFactory`
The target state for the morphing process is a :class:`.Shape`.
Options for the target can be found here.
Notes
-----
This method saves data to disk at :attr:`output_dir`, which
includes frames and/or animation (see :attr:`write_images`
and :attr:`keep_frames`) and, depending on :attr:`write_data`,
CSV files for each frame.
"""
for name, value in [
('max_temp', max_temp),
('min_temp', min_temp),
('min_shake', min_shake),
('max_shake', max_shake),
]:
if (
isinstance(value, bool)
or not isinstance(value, Number)
or not 0 <= value <= 1
):
raise ValueError(f'{name} must be a number >= 0 and <= 1.')
for name, min_value, max_value in [
('temp', min_temp, max_temp),
('shake', min_shake, max_shake),
]:
if min_value >= max_value:
raise ValueError(f'max_{name} must be greater than min_{name}.')
if (
isinstance(allowed_dist, bool)
or not isinstance(allowed_dist, Number)
or allowed_dist < 0
):
raise ValueError('allowed_dist must be a non-negative numeric value.')
morphed_data = start_shape.df.copy()
# iteration numbers that we will end up writing to file as frames
frame_numbers = self._select_frames(
iterations=iterations,
ramp_in=ramp_in,
ramp_out=ramp_out,
freeze_for=freeze_for,
)
base_file_name = f'{start_shape.name}-to-{target_shape}'
record_frames = partial(
self._record_frames,
base_file_name=base_file_name,
bounds=start_shape.plot_bounds,
)
frame_number = record_frames(
data=morphed_data,
count=max(freeze_for, 1),
frame_number=0,
)
def _tweening(
frame: int, *, min_value: Number, max_value: Number
) -> Number: # numpydoc ignore=PR01,RT01
"""Determine the next value with tweening."""
return (max_value - min_value) * ease_in_out_quadratic(
(iterations - frame) / iterations
) + min_value
get_current_temp = partial(
_tweening,
min_value=min_temp,
max_value=max_temp,
)
get_current_shake = partial(
_tweening,
min_value=min_shake,
max_value=max_shake,
)
for i in self._looper(
iterations, leave=True, ascii=True, desc=f'{target_shape} pattern'
):
perturbed_data = self._perturb(
morphed_data.copy(),
target_shape=target_shape,
shake=get_current_shake(i),
allowed_dist=allowed_dist,
temp=get_current_temp(i),
bounds=start_shape.morph_bounds,
)
if self._is_close_enough(start_shape.df, perturbed_data):
morphed_data = perturbed_data
frame_number = record_frames(
data=morphed_data,
count=frame_numbers.count(i),
frame_number=frame_number,
)
if self.write_images:
stitch_gif_animation(
self.output_dir,
start_shape.name,
target_shape=target_shape,
keep_frames=self.keep_frames,
forward_only_animation=self.forward_only_animation,
)
if self.write_data:
morphed_data.to_csv(
self.output_dir / f'{base_file_name}-data-{frame_number:03d}.csv',
index=False,
)
return morphed_data